Aljabar Contoh Step 1Ketuk untuk lebih banyak langkah...Untuk sebarang , asimtot tegaknya terjadi pada , di mana adalah sebuah bilangan bulat. Gunakan periode dasar untuk , , untuk menentukan asimtot tegak . Atur di dalam fungsi tangen, , untuk agar sama dengan untuk menentukan di mana asimtot tegaknya terjadi untuk .Atur bilangan di dalam fungsi tangen agar sama dengan .Periode dasar untuk akan terjadi pada , di mana dan adalah asimtot periode untuk menemukan di mana asimtot tegaknya untuk lebih banyak langkah...Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Asimtot tegak untuk terjadi pada , , dan setiap , di mana adalah bilangan terdapat asimtot tegak untuk fungsi tangen dan Tegak untuk sebarang bilangan bulat Tidak Ada Asimtot DatarTidak Ada Asimtot MiringAsimtot Tegak untuk sebarang bilangan bulat Tidak Ada Asimtot DatarTidak Ada Asimtot MiringStep 2Gunakan bentuk untuk menemukan variabel yang digunakan untuk menentukan amplitudo, periode, geseran fase, dan pergeseran 3Karena grafik fungsi tidak memiliki nilai maksimum ataupun minimum, tidak ada nilai untuk Tidak AdaStep 4Ketuk untuk lebih banyak langkah...Periode fungsi dapat dihitung menggunakan .Ganti dengan dalam rumus untuk mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Step 5Tentukan geseran fase menggunakan rumus .Ketuk untuk lebih banyak langkah...Geseran fase fungsi dapat dihitung dari .Geseran Fase Ganti nilai dari dan dalam persamaan untuk geseran Fase Bagilah dengan .Geseran Fase Step 6Sebutkan sifat-sifat fungsi Tidak AdaPeriode Geseran Fase Tidak AdaPergeseran Tegak Tidak AdaStep 7Fungsi trigonometri dapat digambar menggunakan amplitudo, periode, geseran fase, pergeseran tegak, dan Tegak untuk sebarang bilangan bulat Amplitudo Tidak AdaPeriode Geseran Fase Tidak AdaPergeseran Tegak Tidak Ada
GrafikFungsi Trigonometri. Author: Untung Trisna S. Geser slider a, alpha, b, dan p. Selidiki pengaruh masing-masing nilai slider terhadap grafik y=sin x, y=cos x, atau y=tan x (yang bersesuaian) Pertanyaan 1. Jelaskan pengaruh nilai a terhadap grafik. Trigonometri Contoh Step 1Ketuk untuk lebih banyak langkah...Untuk sebarang , asimtot tegaknya terjadi pada , di mana adalah sebuah bilangan bulat. Gunakan periode dasar untuk , , untuk menentukan asimtot tegak . Atur di dalam fungsi tangen, , untuk agar sama dengan untuk menentukan di mana asimtot tegaknya terjadi untuk .Pindahkan semua suku yang tidak mengandung ke sisi kanan dari untuk lebih banyak langkah...Kurangkan dari kedua sisi persamaan menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .Gabungkan pembilang dari penyebut untuk lebih banyak langkah...Pindahkan tanda negatif di depan bilangan di dalam fungsi tangen agar sama dengan .Pindahkan semua suku yang tidak mengandung ke sisi kanan dari untuk lebih banyak langkah...Kurangkan dari kedua sisi persamaan menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .Gabungkan pembilang dari penyebut untuk lebih banyak langkah...Pindahkan tanda negatif di depan dasar untuk akan terjadi pada , di mana dan adalah asimtot periode untuk menemukan di mana asimtot tegaknya untuk lebih banyak langkah...Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Asimtot tegak untuk muncul pada , , dan setiap , di mana adalah bilangan hanya memiliki asimtot Ada Asimtot DatarTidak Ada Asimtot MiringAsimtot Tegak di mana adalah bilangan bulatTidak Ada Asimtot DatarTidak Ada Asimtot MiringAsimtot Tegak di mana adalah bilangan bulatStep 2Gunakan bentuk untuk menemukan variabel yang digunakan untuk menentukan amplitudo, periode, geseran fase, dan pergeseran 3Karena grafik fungsi tidak memiliki nilai maksimum ataupun minimum, tidak ada nilai untuk Tidak AdaStep 4Ketuk untuk lebih banyak langkah...Periode fungsi dapat dihitung menggunakan .Ganti dengan dalam rumus untuk mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .Step 5Tentukan geseran fase menggunakan rumus .Ketuk untuk lebih banyak langkah...Geseran fase fungsi dapat dihitung dari .Geseran Fase Ganti nilai dari dan dalam persamaan untuk geseran Fase Bagilah dengan .Geseran Fase Step 6Sebutkan sifat-sifat fungsi Tidak AdaPeriode Geseran Fase ke kiriPergeseran Tegak Tidak AdaStep 7Fungsi trigonometri dapat digambar menggunakan amplitudo, periode, geseran fase, pergeseran tegak, dan Tegak di mana adalah bilangan bulatAmplitudo Tidak AdaPeriode Geseran Fase ke kiriPergeseran Tegak Tidak Ada Nilaiminimum dan maksimum sebuah fungsi trigonometri memiliki fungsi dasar, seperti y = sin x dan y = cos x dengan keterangan -1 dan 1. Nilai minimum y = sin x dapat terjadi saat nilai x = 3/2 π dan nilai minimum y = cos x dicapai saat (salah satunya) x = π. Hal ini dapat diperlihatkan pada grafik fungsi berikut ini. Periode Fungsi Trigonometri Fungsi f dengan wilayah R dikatakan periodik apabila ada bilangan , sedemikian sehingga , dengan . Bilangan positif p terkecil yang memenuhi disebut periode dasar fungsi f. Jika fungsi f periodik dengan periode dasar p, maka periode-periode dari fungsi f adalah , dengan n adalah bilangan asli. Jika f dan g adalah fungsi yang periodik dengan periode p, maka dan fg juga periodik dengan periode p. 1. Periode fungsi sinus dan kosinus Untuk penambahan panjang busur dengan kelipatan satu putran penuh akan diperoleh titik pa yang sama, sehingga secara umum berlaku Dengan demikian, fungsi sinus vatau dan fungsi kosinus atau adalah fungsi periodik dengan periode dasar atau . 2. Periode fungsi tangen Untuk penambahan panjang busur dengan kelipatan setengah putran penuh akan diperoleh titik yang nilai tangennya sama untuk kedua sudut tersebut, sehingga secara umum dengan atau dengan . Dengan demikian tangen atau adalah fungsi periodik dengan periode atau . Grafik Fungsi Trigonometri Dengan td adalah tidak didefinisikan. Untuk memudahkan, maka lihatlah segitiga berikut Dari konsep segitiga tersebut diperoleh nilai setiap sudut dan . Untuk sudut dan diperoleh dengan cara berikut Didapat Jika titik bergerak mendekati sumbu X positif, akhirnya berimpit dengan sumbu X, maka x=r, y=0, dan , sehingga Jika titik Px,ybergerak mendekati sumbu Y positif, akhirnya berimpit dengan sumbu Y, maka , dan , sehingga Nilai Maksimum dan Minimum Fungsi Trigonometri Untuk setiap titik Px,y pada fungsi trigonometri memiliki hubungan Berdasarkan uraian tersebut dapat dikemukakan bahwa Nilai maksimum dan minimum fungsi sinus Nilai maksimum dan minimum fungsi kosinus Secara umum dapat dikemukakan bahwa Jika fungsi sinus , maka nilai maksimumnya dan nilai minimumnya Jika fungsi kosinus , maka nilai maksimumnya dan nilai minimumnya Jika adalah fungsi periodik dengan nilai maksimum dan minimum , maka amplitudonya adalah Jenis Grafik Fungsi Trigonometri 1. Grafik fungsi baku ; ; dan Sinus Kosinus Tangen 2. Grafik fungsi ; ; dan Didapat dari grafik trigonometri baku dengan cara mengalikan koordinat setiap titik pada grafik baku dengan bilangan a, sedangkan absisnya tetap. Periode grafik tetap untuk kosinus dan sinus. Sedangankan periode tangen . Sinus Misalkan , maka grafiknya Kosinus Misalkan , maka grafiknya Tangen Misalkan, maka grafiknya 3. Grafik fungsi ; ; dan Didapat dari grafik trigonometri baku dengan cara mengalikan ordinat setiap titik pada grafik baku dengan bilangan a, sedangkan periode grafik sinus dan kosinus menjadi Dan tangen Sinus Misalkan dan , maka grafiknya Kosinus Misalkan dan , maka grafiknya Tangen Misalkan a=1 dan k=3, maka grafiknya 4. Grafik fungsi ; ; dan . Didapat dari grafik trigonometri baku dengan cara mengalikan koordinat setiap titik pada grafik baku dengan bilangan a, sedangkan absisnya digeser sejauh Jika b positif, absis digeser kekiri. Dan jika b negatif, absis digeser kekanan. Sedangkan periode grafik sinus dan kosinus menjadi Dan tangen Sinus Misalkan , , dan , maka grafiknya Kosinus Misalkan , , dan , maka grafiknya 5. Grafik fungsi ; ; dan . Didapat dari grafik trigonometri baku dengan cara mengalikan koordinat setiap titik pada grafik baku dengan bilangan a, sedangkan absisnya digeser sejauh Jika b positif, absis digeser kekiri. Dan jika b negatif, absis digeser kekanan. Koordinat didapat dengan menggeser titik koordinat grafik baku keatas jika c positif dan kebawah jika c negatif. Sedangkan periode grafik sinus dan kosinus menjadi Dan tangen Misalkan , , , dan maka grafiknya sinusnya Contoh Soal Grafik Fungsi Trigonometri dan Pembahasan Contoh Soal 1 Fungsi . Tentukan nilai maksimum, minimum, dan amplitudo fungsi tersebut. Pembahasan Contoh Soal 2 Tentukan nilai maksimum dan minimum fungsi Pembahasan Gunakan Sehingga Contoh Soal 3 Bagilah sudut lancip α menjadi 2 bagian, sehingga hasil perkalian kosinus-kosinusnya mencapai nilai maksimum. Tentukan nilai maksimum itu. Pembahasan Misalkan 2 bagian sudut adalah x dan α-x, maka fx=cosx cosα-x. Berdasarkan rumus trigonometri , maka akan maksimum jika , sehingga Artikel Grafik Fungsi Trigonometri Kontributor Alwin Mulyanto, Alumni Teknik Sipil FT UI Materi lainnya Transformasi Geometri Identitas dan Transpose Matriks Gradien Persamaan Garis LurusAdapungrafik fungsi trigonometri diperlihatkan pada gambar 1.4.3. berikut : tan (x + y) = tan (x - y) = sin 2x = 2 sin x cos x; Dan fungsi y = f(x) dikatakan ganjil, jika f(- x) = - f(x), dalam hal ini daerah asal f sekaligus memuat x dan - x.
GrafikFungsi Sinus. Sebelum kita lanjutkan membahas fungsi sinus, sebaiknya kita ketahui terlebih dahulu dasar fungsi sinus, yaitu. 1. y = sin x (lihat gambar !). 2. y = sin2 x (lihat gambar!) Secara umum fungsi sinus dirumuskan sebagai Berikut: y = k sin a(x ± θ) + c. ∙ Nilai maksimum fungsi = | k | + c. ∙ Nilai minimum fungsi = − | kDenganmemanjatkan puji dan syukur kehadirat Allah SWT, atas nikmat dan karunia-Nya semata, akhirnya penulis dapat menyelesaikan makalah yang berjudul "TRIGONOMETRI.". Dalam penyusunan makalah ini, penulis banyak menemui kesulitan-kesulitan dan hambatan-hambatan baik pada saat mencari sumber maupun pada saat penulisannya, namun berkat
IV Grafik fungsi trigonometri f(x) = a sin x grafik fungsi y = a sin x, dengan a ⋲ R dan a ≠ 0, dapat diperoleh dari Grafik fungsi baku f(x)=sin x, dengan cara mengalikan ordinat tiap titik pada grafik fungsi f(x)=sin x, dengan bilangan a sedangkan absisnya tetap. periode grafik fungsi f(x)= a sin x sama dengan periode grafik fungsi f(x) = sin x, yaitu 2 (360°).